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Abstract. We study Brownian motors driven by colored non Gaussian noises, both in the overdamped
regime and in the case with inertia, and analyze how the departure of the noise distribution from Gaussian
behavior can affect its behavior. We analyze the problem from two alternative points of view: one oriented
mainly to possible technological applications and the other more inspired in natural systems. In both cases
we find an enhancement of current and efficiency due to the non-Gaussian character of the noise. We also
discuss the possibility of observing an enhancement of the mass separation capability of the system when
non-Gaussian noises are considered.

PACS. 05.45.-a Nonlinear dynamics and nonlinear dynamical systems – 05.40.Jc Brownian motion –
87.16.Uv Active transport processes; ion channels

1 Introduction

The study of noise induced transport by “ratchets” has
attracted in recent years the attention of an increasing
number of researchers due to the biological interest and
also to its potential technological applications [1,2]. Since
the pioneering works, besides the built-in ratchet-like bias
and correlated fluctuations (see for instance [3]), different
aspects have been studied, such as tilting [4,5] and pulsat-
ing [6] potentials, velocity inversions [4,7], etc. There are
some relevant reviews [8,9] where the biological and/or
technological motivation for the study of ratchets can be
found.

Recent studies on the role of non Gaussian noises on
some noise-induced phenomena like stochastic resonance,
resonant trapping, and noise-induced transitions [10–15]
have shown the possibility of strong effects on the system’s
response. For instance, enhancement of the signal-to-noise
ratio in stochastic resonance, enhancement of the trapping
current in resonant trapping, or shifts in the transition line
for noise-induced transitions. These results motivate the
interest in analyzing the effect of non Gaussian noises on
the behavior of Brownian motors. Here we analyze the ef-
fect of a particular class of colored non Gaussian noise on
the transport properties of Brownian motors. Such a noise
source is based on the nonextensive statistics [16,17] with
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a probability distribution that depends on q, a parame-
ter indicating the departure from Gaussian behavior: for
q = 1 we have a Gaussian distribution, and different non
Gaussian distributions for q > 1 or q < 1.

Some of the motivations for studying the effect of
non Gaussian noises are, in addition to its intrinsic in-
terest within the realm of noise induced phenomena, the
existence of experimental data indicating that for sev-
eral biological problems fluctuations have a non Gaussian
character. Examples are current measurements through
voltage-sensitive ion channels in a cell membrane or ex-
periments on the sensory system of rat skin [18]. Also,
recent detailed studies on the source of fluctuations in dif-
ferent biological systems [19] clearly show that, in such a
context, noise sources are in general non Gaussian. Even
though the previous arguments refer to biological aspects
that are not directly related to ratchets, they strongly in-
duce to think about the possible relevance of considering
non Gaussian noises in those biological situations where
the ratchet transport mechanism can play a role. In addi-
tion, from the point of view of technological applications,
the finding of new conditions that may lead to an enhance-
ment of the efficiency of the devices is always desirable.
It is worth here remarking that there are some previous
studies of non-Gaussian noise with similar tails [20]. For
instance, those authors have analyzed aspects of the pe-
riodic attractors emerging from a saddle-node bifurcation
plus noise that show chaos, or escape rates in noisy maps.
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We show here that, as a consequence of the non
Gaussian character of the driving noise and from two alter-
native points of view, we can find a kind of enhancement of
the system’s response. The first –direct– point of view, fol-
lowing the line of previous works [10,12–15], takes as free
parameters those that could be controlled in the case of
technological applications. In this case we find a remark-
able increase of the current together with an enhancement
of the motor efficiency when non-Gaussian noises are con-
sidered (showing an optimum for a given degree of depar-
ture from the q = 1 Gaussian behavior). Moreover, when
inertia is taken into account it is found that, again when
departing from the Gaussian case, there seems to be a re-
markable increment in the mass separation capability of
these devices. The second point of view [11] is the more
natural one when thinking of biological systems, as it con-
siders the non-Gaussian noise as a primary source. In this
case we also find an enhancement of the current and ef-
ficiency due to departure from Gaussian behavior, which
occurs for relative low values of noise intensity. And the
possibility of an inversion of current due only to changes
on the non gaussianity of the noise.

Our analysis will include numerical simulations and
analytical results coming from an adiabatic approximation
valid for high correlation time of the forcing. We begin pre-
senting the general framework within which we will work,
and the nature of the non Gaussian noise. We continue
discussing the first of the two points of view, and the re-
sults showing the enhancement we can find within it. After
that we discuss the second point of view where we com-
pare Gaussian and non Gaussian behaviors but adopting
a constant width criterion, and discuss the results. Finally
we draw some general conclusions.

2 Framework

We begin considering the general system

m
d2x

dt2
= −γ

dx

dt
− V ′(x) − F + ξ(t) + η(t), (1)

where m is the mass of the particle, γ the friction con-
stant, V (x) the ratchet potential, F is a constant “load”
force, and ξ(t) the thermal noise satisfying 〈ξ(t)ξ(t′)〉 =
2γT δ(t − t′). Finally, η(t) is the time correlated forcing
(with zero mean) that allows the rectification of the mo-
tion, keeping the system out of thermal equilibrium even
for F = 0. For this type of ratchet model several differ-
ent kind of time correlated forcing have been considered in
the literature [8,9]. In almost all studies authors have used
Gaussian noises. The few exceptions which considered non
Gaussian processes correspond mainly to the case of di-
chotomic noises [2,4,9].

The main characteristic introduced by the non
Gaussian form of the forcing we consider here, is the
appearance of arbitrary strong “kicks” with relatively
high probability when compared, for example, with the
Gaussian Ornstein–Uhlenbeck (OU) noise and, of course,
with the dichotomic non Gaussian process.

2.1 Noise source

We will consider the dynamics of η(t) as described by the
following Langevin equation [10]

dη

dt
= −1

τ

d

dη
Vq(η) +

1
τ

ζ(t), (2)

with 〈ζ(t)〉 = 0 and 〈ζ(t)ζ(t′)〉 = 2Dδ(t − t′), and

Vq(η) =
D

τ(q − 1)
ln

[
1 +

τ

D
(q − 1)

η2

2

]
.

Previous studies of such processes in connection with
stochastic resonance problems [10,11] and dynamical trap-
ping [13], have shown that the non Gaussian behavior of
the noise leads to remarkable effects. For q = 1, the pro-
cess η coincides with the OU one (with a correlation time
equal to τ), while for q �= 1 it is a non Gaussian pro-
cess. As shown in [10], for q < 1 the stationary probabil-
ity distribution has a bounded support, with a cut-off at
|η| = ω ≡ [(1 − q)τ/(2D)]−

1
2 , with a form given by

Pq(η) =
1
Zq

[
1 −

( η

ω

)2
] 1

1−q

, (3)

for |η| < ω and zero for |η| > ω (Zq is a normalization
constant). Within the range 1 < q < 3, the probability
distribution is given by

Pq(η) =
1
Zq

[
1 +

τ(q − 1)η2

2D

] 1
1−q

(4)

for −∞ < η < ∞, and decays as a power law (slower than
a Gaussian distribution). Finally, for q > 3, this distribu-
tion can not be normalized.

Hence, we see that keeping D constant, the width or
dispersion of the distribution increases with q. This means
that, the higher the q, the stronger the “kicks” that the
particle will receive. Figure 1 depicts the typical form of
this distribution for q smaller, equal and larger than 1.

In [10] it was shown that the second moment of the
distribution, which we will interpret as the “intensity” of
the non Gaussian noise, is given by

Dng ≡ 〈η2〉 =
2D

τ(5 − 3q)
, (5)

which diverges for q ≥ 5/3. For the correlation time τng

of the process η(t), defined in detail in [10] it is not
possible to find an analytical expression. However, it is
known [10] that for q → 5/3 it diverges as ∼ (5 − 3q)−1.
In our analysis, we will consider values of q in the range
0.5 < q < 5/3 	 1.66. For this interval we have stud-
ied numerically the dependence of τng on q, and we have
found the following analytical approximation

τng 	 2
[1 + 4(q − 1)2] τ

(5 − 3q)
, (6)
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Fig. 1. PDF vs. η for different values of q, and for D/τ =
1. From top to bottom, the dotted line is for q = 0.5, the
thick continuous line is for q = 1 (Gaussian case), and the thin
continuous line is for q = 1.5.
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Fig. 2. Comparison of simulations (line with squares) and the
analytical approximation (dotted line) for τng vs. q.

that fits very accurately the results. In Figure 2 we com-
pare the results from simulations for the correlation time
as a function of q with the formula on equation (6). This
fitting will be the one we will consider in Section 4, when
analyzing the dependence of the transport properties of
the ratchet system on the intrinsic parameters of the non
Gaussian noise, Dng and τng.

2.2 System parameters

Here we point out the way in which we will explore the
parameter space in order to find relevant and general
phenomena. The system parameters appearing in equa-
tions (1) and (2), are m, γ, F, T, D, τ and q. First, it is
possible to scale out the parameter γ, and set γ = 1.
We will do this in most calculations, except in some cases

where we will consider γ = 2 in order to get to the param-
eter region considered in a previous work in the clearest
possible way.

It is clear that exploring the whole parameter space is
an extremely tedious (and probably uninteresting) task.
Instead, we will focus in some parameter region where in-
teresting phenomena have been reported for ratchets with
Gaussian noises, and change the characteristics of the forc-
ing (basically, the parameter q) in order to analyze the
effects of the non gaussianity.

Concerning the parameters characterizing the non
Gaussian noise, we will analyze the changes in the sys-
tem behavior when varying q at constant D and τ first,
and then at constant Dng and τng. The general behavior
of most of the noise induced phenomena in terms of the
noise intensity is the appearance of an optimum intensity
for which the response of the system is maximum. This
is because small noise intensities are generally not enough
to produce notable effects (specially when the system has
threshold characteristics), and very large noise intensities
leads to a dynamics which is completely dominated by
noise and other characteristics of the system are lost. In
this work we will study the behavior of the system for
values of noise intensities (D or Dng) that goes from zero
to values where the noise induced phenomena (directed
transport) is well developed. We will not analyze the large
noise intensity regime in which the transport start to de-
crease. For the correlation time of the forcing (τ or τng)
we will consider only relatively high values, in order to
compare with the adiabatic theory existing for τ → ∞.
The low correlation time regime, which may be also an
interesting feature, will remain unexplored.

Concerning the temperature we will consider low val-
ues —in order to have the non Gaussian forcing as the
main source of noise— but non zero in most cases, in or-
der to develop the adiabatic theory. For F we will consider
values comparable (but lower) to those of V ′(x). When
studying inertial effects we will consider ranges of m simi-
lar to those appearing in the literature in order to compare
results.

As stated above, the parameter q characterizes the non
Gaussian properties of the noise distribution (q = 1 cor-
responding to the Gaussian case). We will consider values
of q ranging from q ∼ 0.6 to q ∼ 5/3 	 1.66, that is,
surrounding the Gaussian case, and where some interest-
ing results are found for q > 1. For q < 0.6 we expect the
transport phenomena to be reduced, as the noise distribu-
tion is bounded for q < 1 and the bounds decreases with
decreasing q. For q → 5/3 the efficiency goes to zero be-
cause of the divergence of the second moment of the noise
distribution. Hence, we do not consider higher values of q.

3 Analysis for constant D and τ

As our first approach we will analyze the results for the
current and efficiency as function of q for constant val-
ues of D and τ . These are the parameters that, together
with q, could be primary controlled in a designed tech-
nological device. For instance, it is possible to think on
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Fig. 3. The ratchet potentials considered in this work: V1(x)
(a) and V2(x) (b). The arrows indicate the direction of the
current in normal situations (that is, when there is no current
“inversion”).

an electronic circuit whose output is governed by equa-
tion (2), where τ and D are determined by adequately
tuning the values of capacitors, inductances, resistances or
other system’s components [22]. By performing this anal-
ysis we are continuing (and complementing) the line of
previous works [10,12–15] which studied the response of
different systems to a noise source given by equation (2)
considering D, τ and q as the control parameters.

3.1 Overdamped system

Firstly, we analyze the overdamped regime setting m = 0
and γ = 1. For the ratchet potential in this case we will
consider the same form as in [3] (with period L = 2π)

V (x) = V1(x) = −
∫ x

dx′
(

exp[α cos(x′)]
J0(iα)

− 1
)

, (7)

where J0(iα) is the Bessel function, and α = 16. The
form of V1(x) is shown in Figure 3a. The integrand in
equation (7) is the ratchet force (−V ′) appearing in equa-
tion (1).

We are interested on analyzing the dependence of the
mean current J = 〈dx

dt 〉/L and the efficiency ε on the
different parameters, in particular, their dependence on
the parameter q. The efficiency is defined as the ratio of
the work (per unit time) done by the particle “against”
the load force F

lim
Tf→∞

1
Tf

∫ x=x(Tf)

x=x(0)

Fdx(t),

to the mean power injected to the system through the
external forcing η

lim
Tf→∞

1
Tf

∫ x=x(Tf )

x=x(0)

η(t)dx(t).
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Fig. 4. Current (a) and efficiency (b) as functions of q. The
solid line corresponds to the adiabatic approximation, the line
with squares shows results from simulations. All calculations
are for m = 0, γ = 1, kT = 0.5, F = 0.1, D = 1 and τ =
100/(2π).

For the numerator we get F 〈dx
dt 〉 = FJL, while for the

denominator we obtain

lim
Tf→∞

1
Tf

∫ Tf

0

η(t)
dx

dt
dt =

1
γ

(〈−V ′η〉 + 〈η2〉).

Simulations show that the time average of V ′(x(t))η(t) is
negligible in the latter equality (it is always several orders
of magnitude lower than 〈η2〉) and we may approximate
the denominator as 〈η2〉/γ = 2D[γτ(5 − 3q)]−1. Interest-
ing and complete discussions on the thermodynamics and
energetics of ratchet systems can be found in [21].

In the overdamped regime we are able to give an ap-
proximate analytical solution for the problem, which is
expected to be valid in the large correlation time regime
( τ

D 
 1): we perform the adiabatic approximation of solv-
ing the Fokker-Planck equation associated to equation (1)
assuming a constant value of η [23], analogous to the one
used in [24]. This leads us to obtain an η–dependent value
of the current J(η) that is then averaged over η using
the distribution Pq(η) [10] with the desired values of q,
D and τ

J =
∫

dη J(η)Pq(η).

We remark that, although the Fokker-Plank equation is
solved in the τ/D → ∞ limit, the solution we find depends
on D and τ through the Pq(η) distribution.

In Figure 4, we show typical analytical results for the
current and the efficiency as functions of q together with
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Fig. 5. Current (a) and efficiency (b) as functions of q.
Results from simulations at T = 0 for D = 1 (squares),
D = 10 (circles), and D = 20 (triangles). All calculations are
for m = 0, γ = 1, F = 0.1 and τ = 100/(2π).

results coming from numerical simulations (for the com-
plete system given by Eqs. (1) and (2)). Calculations have
been done in a parameter region similar to that stud-
ied in [3] but considering (apart from the difference pro-
vided by the non Gaussian noise) a non–zero load force
that leads to a non–vanishing efficiency. As can be seen,
although there is not a quantitative agreement between
theory and simulations, the adiabatic approximation pre-
dicts qualitatively very well the behavior of J and ε as
q is varied. As shown in the figure, the current grows
monotonously with q (at least for q < 5/3) while there
is an optimal value of q (> 1) which gives the maximum
efficiency. This fact could be interpreted as follows: when q
is increased, the width of the Pq(η) distribution grows and
high values of the non Gaussian noise become more fre-
quent, leading to an improvement of the current. Although
the mean value of J increases monotonously with q, the
efficiency decays when q approaches 5/3 since the denomi-
nator in the definition of ε, which is essentially the disper-
sion of the noise distribution, diverges. As we will shown,
the decay of the efficiency is also associated to an increase
on the fluctuations of J .

In Figure 5 we show results from simulations for J and
ε as functions of q for different values of D, the intensity
of the white noise in equation (2). The results correspond
to T = 0, hence, the only noise present in the system is
the non Gaussian one. The behavior of J and ε as func-
tion of q is essentially the same appearing in Figure 4. In
Figure 6 we show σJ , the variance of the current, as a
function of q, from the same simulations as in Figure 5.
It can be seen that the decay of the efficiency occurs in
the range of q where σJ exhibits a huge growth, reaching
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Fig. 6. Variance of J as function of q. The lines with sym-
bols corresponds to results from simulations at T = 0 for:
D = 1 (squares), D = 10 (circles), and D = 20 (triangles).
The dotted line without symbols corresponds to the adiabatic
theory (at a non zero temperature T = 0.25) for D = 10. The
rest of the parameters are the same as in Figure 5. The in-
set shows the same curves with a different vertical scale that
makes more apparent the growth of σJ for D = 1 (line with
squares).

values of the order of J2 and even larger. This lead us to
think on a connection between the decay of efficiency and
the growth of the fluctuations of J to values of the order
of J itself. A simple and intuitive interpretation of such
connection can be given: for q → 5/3, in spite of having a
large (positive) mean value of the current, for a given real-
ization of the process the transport of the particle towards
the desired direction is far from being assured (due to the
large fluctuations on J). Hence, the transport mechanism
ceases to be efficient.

We note that, although it is easier to interpret the
decay of ε with q as being a consequence of the increase
of σJ instead of to the increase of Dng, from the point of
view of the definition of the efficiency, the decay is due
to the latter cause. However, the adiabatic theory allow
us to link the growth of Dng with that of σJ and view
both phenomena as equally connected to the decay of the
efficiency. In Figure 6 we have also shown results for σJ as
a function of q coming from the adiabatic theory. (σJ is
computed as 〈J(η)2〉 − 〈J(η)〉2 with J(η) obtained from
the Fokker–Plank equation for τ → ∞ and the averages
taken with respect to the stationary Pq(η) distribution.) It
can be observed that the theory qualitatively agrees with
simulations, as it predicts a monotonously increase of σJ

with q which is in the same scale of the one computed
from simulations (it should be noted, that the adiabatic
theory is developed at a non–zero temperature).

The monotonous increase of both σJ and Dng with
q (for constant D and τ) indicates that, in principle, it
is possible to obtain an analytical one–to–one relation
between both magnitudes. The actual computations are
rather tedious since involve inverting integral relations
that we have solved numerically.
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Fig. 7. Separation of masses: results from simulations for the current as a function of q for particles of masses m = 0.5 (hollow
circles) and m = 1.5 (solid squares). Calculations for three different values of the load force: F = 0.025 (a), F = 0.02 (b) and
F = 0.03 (c).

It is interesting to mention another phenomenon that
could be related to the decay of the efficiency —although
we will not delve deep into this point— which is the di-
vergence of the “flatness” of the noise distribution. The
flatness of a noise distribution is defined as the ratio of the
fourth moment to the square of the second moment [4]. It
is interesting to note that the flatness of Pq(η) is infinite
for q > 7/5 = 1.4, which is approximately the parameter
region where we observe the decay of the efficiency. In [4],
the dependence of the current on the flatness of the noise
distribution was discussed for a ratchet system similar to
the one here studied, however, it was done in the limit of
small correlation time and considering a different kind of
random forcing.

It is worth recalling here that q = 1 corresponds to the
Gaussian OU noise [9]. Hence, the results for constant D
and τ show that the transport mechanism becomes more
efficient when the stochastic forcing has a non Gaussian
distribution with q > 1. Let us now discuss the case with
inertia.

3.2 Inertial system

Now we turn to study the m �= 0 case, that is, the situa-
tions in which the inertia effects are relevant. Hence, we
consider the complete form of equation (1).

We have studied the dependence of the current J on
the mass m for different values of q at constant D and τ ,
finding that the results (not shown) are in general similar
to those appearing in [25,26] for q = 1. As m is increased
from 0, the inertial effects initially contribute to increase
the current, until an optimal value of m is reached. As
expected, for high values of m, the motion of the particle
becomes more difficult and, for m → ∞, the current van-
ishes. As stated in [25,26], eventually (depending on the
parameters) an inversion of the current is observed for a
well defined range of values of m. In such situations, the

phenomenon of mass separation becomes possible, as par-
ticles with different masses moves in opposite directions.
For our system, the region of parameters where this phe-
nomenon occurs may now depend on q and differs from
those in [25,26] corresponding to q = 1.

In order to study specifically the influence of the non
gausiannity of the noise in the phenomenon of mass sepa-
ration, we analyze here the same system studied in [25,26]
but considering the non Gaussian forcing described by
equation (2). We fix

V (x) = V2(x) = − 2
π

[sin(2πx) + 0.25 sin(4πx)]

in equation (1) as the ratchet potential, which is shown in
Figure 3b. We focus on the region of parameters where,
in [25] (for q = 1), separation of masses was found. We fix
γ = 2, T = 0.1, τ = 0.75, and D = 0.1875 and assume the
values of the masses m = m1 = 0.5 and m = m2 = 1.5 as
in [25]. Our main result is that the separation of masses
is enhanced when a non–Gaussian noise with q > 1 is
considered. In Figure 7a we show J as function of q for
m1 = 0.5 and m2 = 1.5. It can be seen that there is an op-
timum value of q that maximizes the difference of currents.
This value, which is close to q = 1.25, is indicated with
a vertical double arrow. Another double arrow indicates
the separation of masses occurring for q = 1 (Gaussian OU
forcing). We have observed that when the value of the load
force is varied, the difference between the curves remains
approximately constant but both are shifted together to
positive or negative values (depending on the sign of the
variation of the loading). By controlling this parameter it
is possible to achieve, for example, the situation shown in
Figure 7b, where, for the value of q at which the difference
of currents is maximal, the heavy “species” remains static
on average (has J = 0), while the light one has J > 0. It
is also possible to get the situation shown in Figure 7c, at
which, for the optimal q, the two species move in opposite
directions with equal average velocity.
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4 Analysis for constant Dng and τng

We consider here the second point of view. It corresponds
to studying the behavior of current and efficiency as func-
tion of q when Dng and τng are kept constant (instead
of D and τ as was done in the previous section). This
approach is more consistent with the image of η as a pri-
mary (natural) source of noise, hence it can be considered
more relevant from the point of view of biological systems.
Moreover, it isolates the effects of the non-Gaussian char-
acter of the noise distributions by keeping the dispersion
and correlation time at fixed values.

4.1 Overdamped case

We consider equation (1) with m = 0 and V (x) as in
Figure 3a (see Sect. 3.1, overdamped regime). In the sim-
ulations, for each value of q, we have adapted the values
of D and τ in order to obtain the desired values of Dng

and τng. This was done by inverting equations (5) and (6).
As q is varied for constant Dng, the efficiency is essen-

tially proportional to the current and the curves for ε(q)
have the same behavior than those for J(q). Hence, we
only present results for J . In Figure 8 we show the results
from both, the adiabatic theory and the numerical simu-
lations, for the current as function of q for τng = 2π/100
and different values of Dng. An interesting result is found
for low values of Dng. For Dng < 0.5 it is observed that
the current grows monotonously with q through most of
the range studied. For q very close to 5/3 it decays, since
D → 0. This means that, for q > 1 we found an enhance-
ment of J with respect to the Gaussian noise situation
(q = 1) with an optimum value of q < 5/3. This enhance-
ment has to be attributed essentially to the non-Gaussian
character of the noise η(t), as for every q, on each curve,
we have considered the same values of dispersion and cor-
relation time.

For higher values of Dng the effect disappears: for
(Dng ∼ 1) the dependence of J on q becomes flat in most
of the range analyzed. This means that the non-Gaussian
character does not play a relevant role in this region of
parameters, and the current and efficiency are essentially
determined by the intensity and correlation time of the
noise source η, independently of the detailed statistical
characteristics of the process η(t). For even higher values
of Dng(∼ 2) the optimum value of q that maximizes the
current tends toward values of q < 1 (results not shown).
However, the curves are essentially flat, the differences
with the q = 1 case being not remarkable at all. Hence, we
can remark that the enhancement effect occurs for q > 1
at low values of Dng.

4.2 Inertial systems

We consider now the case m �= 0, and study the current
as a function of q for fixed values of Dng and τng. We
fix γ = 1 and consider again the potential V (x) = V2(x)
defined in Section 3.2.

0.6 0.8 1.0 1.2 1.4 1.6

1E-4

1E-3

0.01

J

q

Fig. 8. Current as a function of q for fixed τng = 100/(2π)
and different fixed values of Dng . The lines with symbols corre-
sponds to simulations and the lines without symbols to the adi-
abatic theory. From top to bottom, the curves are for Dng = 1
(solid line for theory and solid line with triangles for simula-
tions); Dng = 0.35 (dashed line and dashed line with crosses);
Dng = 0.2 (dotted line and dotted line with squares); and
Dng = 0.1 (dash-dot-dot line and dash-dot-dot line with cir-
cles). All calculations are for m = 0, γ = 1, T = 0.5 and
F = 0.1.

In Figure 9 we show the results for J(q) at fixed
Dng(= 0.1875) and τng(= 0.75), for different values of the
masses and the external force F . It can be seen that, when
considering q �= 1, no remarkable enhancement of the mass
separation capabilities of the system is found. Moreover,
for q > 1 the mass separation effect decreases. However,
an interesting phenomenon occurring is an inversion of
current when considering large enough values of q (de-
pending on the mass and F ). This inversion of current is
due essentially to the variation of the non-Gaussian prop-
erties of the noise distribution, since the dispersion Dng

and correlation time τng are kept fixed.
We want to stress that Dng and τng are the relevant

parameters of the non Gaussian noise source when we
think of such a noise as the “primary source” acting on
the Brownian particle. Hence, the results shown in this
Section for the current as a function of q for constant val-
ues of Dng and τng, contributes to isolate the effect of
the non Gaussian character of the noise. In this way, from
the results for “equivalent” Gaussian and non Gaussian
noises, we observe that non Gaussian noises with q > 1
produce an enhancement of the current when compared
to the “equivalent” Gaussian case.

5 Conclusions

We have systematically studied the effect of a colored non
Gaussian noise source on the transport properties of a
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Fig. 9. Current as a function of q for fixed τng = 0.75 and
Dng = 0.1875. Figure (a) is for F = 0.015 and (b) is for F =
0.025. In both cases circles correspond to m = 0.5 while squares
correspond to m = 1.5.

Brownian motor using two alternative points of view. In
the first one, we analyze the results for the current, effi-
ciency and mass separation as functions of q, for constant
values of D and τ , which are the parameters that could
be adequately controlled, for example, in a designed tech-
nological device. The second point of view corresponds to
studying those behaviors as functions of q when Dng and
τng are kept constant. This is more consistent with the
image of η as a primary (natural) source of noise, and it
isolates the effects of the non-Gaussian character of the
noise distributions by keeping the dispersion and correla-
tion time at fixed values.

Considering the first, direct, point of view, we have
found that a departure from Gaussian behavior, in par-
ticular given by a value of q > 1, induces a remarkable
increase of the current together with an enhancement of
the motor efficiency. The latter shows, in addition, an op-
timum value for a given degree of non gaussiannity and
decays due to the enhancement of fluctuations when the
correlation of the non Gaussian noise diverges. When iner-
tia is taken into account we have also found a considerable
increment in the mass separation capability of the system.

The second point of view is analogous to the one
used in reference [11] to study stochastic resonance in an
activator-inhibitor system, where it was shown that the
signal-to-noise ratio shows an enhancement as a function
of q. Here, by keeping the distribution’s width Dng and the
correlation time τng constant, we have compared the re-
sults for “equivalent” Gaussian and non Gaussian noises.
We have observed that non Gaussian noises with q > 1
produce an enhancement of the current when compared
to the Gaussian case. This effect is observed for relatively
low values of the noise intensity Dng and lead us to in-
terpret that, at low values of Dng, the increment of the
probability of having arbitrary high values of the noise
that occurs for q > 1 (with respect to the Gaussian case)
plays a significative role in the determination of the cur-
rent. In contrast, for higher values of Dng, the fluctuations

dominate the dynamics in such a way that the Gaussian or
non Gaussian character of the noise produces no relevant
differences.

When studying inertial systems at constant Dng and
τng we have not observed relevant effects on the mass sep-
aration capability of the system, in the region of parame-
ters considered: the effect of mass separation is governed
essentially by the noise intensity and the correlation time.

Another remarkable fact is the occurrence of an inver-
sion of current as a consequence of varying the parameter
q alone (keeping Dng and τng fixed). This clearly shows
the relevance that the details of the noise distribution may
have in the determination of the transport properties in
ratchet systems or, equivalently, how sensitive the ratchet
systems could be to the detailed properties of the noises.

We think that these studies could be of interest for
their possible relation to biologically motivated prob-
lems [1,18,19] as well as for the potential technological
applications, for instance in “nanomechanics” [8,9]. More
specific studies on these areas will be the subject of further
work.
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